Nano-tungsten carbide decorated graphene as co-catalysts for enhanced hydrogen evolution on molybdenum disulfide.
نویسندگان
چکیده
A novel electrocatalyst of layered MoS2 supported on reduced graphene oxide (RGO) decorated with nano-sized tungsten carbide (WC) shows an enhanced catalytic performance in the hydrogen evolution reaction, which could be attributed to the presence of a conductive and electrocatalytically-active nano-WC dispersant and the positive synergistic effect between nano-WC/RGO and layered MoS2.
منابع مشابه
Carbon doped molybdenum disulfide nanosheets stabilized on graphene for the hydrogen evolution reaction with high electrocatalytic ability.
Fabricating a cost effective hydrogen evolution reaction catalyst without using precious metal elements is in crucial demand for environmentally-benign energy production. In this work, the thin and edge-rich molybdenum disulfide nanosheets, with carbon doped in the interlayers and decorated on graphene, were developed by a facile solvothermal process. The as-synthesized nanohybrids exhibited hi...
متن کاملCoupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution
Electrochemical water splitting is one of the most economical and sustainable methods for large-scale hydrogen production. However, the development of low-cost and earth-abundant non-noble-metal catalysts for the hydrogen evolution reaction remains a challenge. Here we report a two-dimensional coupled hybrid of molybdenum carbide and reduced graphene oxide with a ternary polyoxometalate-polypyr...
متن کاملTwo-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution.
Composite materials: Tungsten disulfide and WS2 /reduced graphene oxide (WS2 /rGO) nanosheets were fabricated by hydrothermal synthesis using tungsten chloride, thioacetamide, and graphene oxide (GO) as starting materials. The WS2 nanosheets are efficiently templated on the rGO layer. The WS2 /rGO hybrid nanosheets show much better electrocatalytic activity for the hydrogen evolution reaction t...
متن کاملSynergistic effect of tungsten carbide and palladium on graphene for promoted ethanol electrooxidation.
The synergistic effect of WC and Pd has large benefit for ethanol electrooxidation. The small-sized Pd nanoparticles (NPs) decorated tungsten carbide on graphene (Pd-WC/GN) will be a promising anode catalyst for the direct ethanol fuel cells. The density functional theory (DFT) calculations reveal that the strong interaction exists at the interface between Pd and WC, which induces the electron ...
متن کاملThree-dimensional Nitrogen-Doped Graphene Supported Molybdenum Disulfide Nanoparticles as an Advanced Catalyst for Hydrogen Evolution Reaction
An efficient three-dimensional (3D) hybrid material of nitrogen-doped graphene sheets (N-RGO) supporting molybdenum disulfide (MoS(2)) nanoparticles with high-performance electrocatalytic activity for hydrogen evolution reaction (HER) is fabricated by using a facile hydrothermal route. Comprehensive microscopic and spectroscopic characterizations confirm the resulting hybrid material possesses ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 49 43 شماره
صفحات -
تاریخ انتشار 2013